Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Front Microbiol ; 15: 1362714, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655084

RESUMEN

Introduction: Acute febrile illnesses (AFI) in developing tropical and sub-tropical nations are challenging to diagnose due to the numerous causes and non-specific symptoms. The proliferation of rapid diagnostic testing and successful control campaigns against malaria have revealed that non-Plasmodium pathogens still contribute significantly to AFI burden. Thus, a more complete understanding of local trends and potential causes is important for selecting the correct treatment course, which in turn will reduce morbidity and mortality. Next-generation sequencing (NGS) in a laboratory setting can be used to identify known and novel pathogens in individuals with AFI. Methods: In this study, plasma was collected from 228 febrile patients tested negative for malaria at clinics across Senegal from 2020-2022. Total nucleic acids were extracted and converted to metagenomic NGS libraries. To identify viral pathogens, especially those present at low concentration, an aliquot of each library was processed with a viral enrichment panel and sequenced. Corresponding metagenomic libraries were also sequenced to identify non-viral pathogens. Results and Discussion: Sequencing reads for pathogens with a possible link to febrile illness were identified in 51/228 specimens, including (but not limited to): Borrelia crocidurae (N = 7), West Nile virus (N = 3), Rickettsia felis (N = 2), Bartonella quintana (N = 1), human herpesvirus 8 (N = 1), and Saffold virus (N = 1). Reads corresponding to Plasmodium falciparum were detected in 19 specimens, though their presence in the cohort was likely due to user error of rapid diagnostic testing or incorrect specimen segregation at the clinics. Mosquito-borne pathogens were typically detected just after the conclusion of the rainy season, while tick-borne pathogens were mostly detected before the rainy season. The three West Nile virus strains were phylogenetically characterized and shown to be related to both European and North American clades. Surveys such as this will increase the understanding of the potential causes of non-malarial AFI, which may help inform diagnostic and treatment options for clinicians who provide care to patients in Senegal.

2.
Microb Genom ; 9(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37204422

RESUMEN

Experimental studies on the biology of malaria parasites have mostly been based on laboratory-adapted lines, but there is limited understanding of how these may differ from parasites in natural infections. Loss-of-function mutants have previously been shown to emerge during culture of some Plasmodium falciparum clinical isolates in analyses focusing on single-genotype infections. The present study included a broader array of isolates, mostly representing multiple-genotype infections, which are more typical in areas where malaria is highly endemic. Genome sequence data from multiple time points over several months of culture adaptation of 28 West African isolates were analysed, including previously available sequences along with new genome sequences from additional isolates and time points. Some genetically complex isolates eventually became fixed over time to single surviving genotypes in culture, whereas others retained diversity, although proportions of genotypes varied over time. Drug resistance allele frequencies did not show overall directional changes, suggesting that resistance-associated costs are not the main causes of fitness differences among parasites in culture. Loss-of-function mutants emerged during culture in several of the multiple-genotype isolates, affecting genes (including AP2-HS, EPAC and SRPK1) for which loss-of-function mutants were previously seen to emerge in single-genotype isolates. Parasite clones were derived by limiting dilution from six of the isolates, and sequencing identified de novo variants not detected in the bulk isolate sequences. Interestingly, several of these were nonsense mutants and frameshifts disrupting the coding sequence of EPAC, the gene with the largest number of independent nonsense mutants previously identified in laboratory-adapted lines. Analysis of genomic identity by descent to explore relatedness among clones revealed co-occurring non-identical sibling parasites, illustrative of the natural genetic structure within endemic populations.


Asunto(s)
Malaria , Plasmodium falciparum , Humanos , Plasmodium falciparum/genética , Genotipo , Genómica , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas Serina-Treonina Quinasas/genética
3.
mBio ; 13(4): e0194822, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35950755

RESUMEN

The merozoite surface protein MSPDBL2 of Plasmodium falciparum is under strong balancing selection and is a target of naturally acquired antibodies. Remarkably, MSPDBL2 is expressed in only a minority of mature schizonts of any cultured parasite line, and mspdbl2 gene transcription increases in response to overexpression of the gametocyte development inducer GDV1, so it is important to understand its natural expression. Here, MSPDBL2 in mature schizonts was analyzed in the first ex vivo culture cycle of 96 clinical isolates from 4 populations with various levels of infection endemicity in different West African countries, by immunofluorescence microscopy with antibodies against a conserved region of the protein. In most isolates, less than 1% of mature schizonts were positive for MSPDBL2, but the frequency distribution was highly skewed, as nine isolates had more than 3% schizonts positive and one had 73% positive. To investigate whether the expression of other gene loci correlated with MSPDBL2 expression, whole-transcriptome sequencing was performed on schizont-enriched material from 17 of the isolates with a wide range of proportions of schizonts positive. Transcripts of particular genes were highly significantly positively correlated with MSPDBL2 positivity in schizonts as well as with mspdbl2 gene transcript levels, showing overrepresentation of genes implicated previously as involved in gametocytogenesis but not including the gametocytogenesis master regulator ap2-g. Single-cell transcriptome analysis of a laboratory-adapted clone showed that most individual parasites expressing mspdbl2 did not express ap2-g, consistent with MSPDBL2 marking a developmental subpopulation that is distinct but likely to co-occur alongside sexual commitment. IMPORTANCE These findings contribute to understanding malaria parasite antigenic and developmental variation, focusing on the merozoite surface protein encoded by the single locus under strongest balancing selection. Analyzing the initial ex vivo generation of parasites grown from a wide sample of clinical infections, we show a unique and highly skewed pattern of natural expression frequencies of MSPDBL2, distinct from that of any other antigen. Bulk transcriptome analysis of a range of clinical isolates showed significant overrepresentation of sexual development genes among those positively correlated with MSPDBL2 protein and mspdbl2 gene expression, indicating the MSPDBL2-positive subpopulation to be often coincident with parasites developing sexually in preparation for transmission. Single-cell transcriptome data confirm the absence of a direct correlation with the ap2-g master regulator of sexual development, indicating that the MSPDBL2-positive subpopulation has a separate function in asexual survival and replication under conditions that promote terminal sexual differentiation.


Asunto(s)
Malaria Falciparum , Parásitos , Animales , Malaria Falciparum/parasitología , Proteínas de la Membrana/genética , Merozoítos , Parásitos/genética , Plasmodium falciparum , Proteínas Protozoarias/metabolismo , Esquizontes/genética , Transcriptoma
4.
IJID Reg ; 2: 96-98, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35721431

RESUMEN

This study investigated the seroprevalence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) immunoglobulin G (IgG) during the first pandemic wave in Senegal. The seroprevalence rate of SARS-CoV-2 IgG was assessed in 10 cities in Senegal by testing plasma from volunteers attending healthcare clinics for reasons unrelated to coronavirus disease 2019 (n=3231) between June and October 2020. The overall positivity rate was 20.4% and large geographical differences in seropositivity (6-41.9%) were observed, suggesting that the true number of infections was substantially higher than the official estimate of 8.5%.

5.
Virus Evol ; 8(1): veac025, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371561

RESUMEN

Molecular surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is growing in west Africa, especially in the Republic of Senegal. Here, we present a molecular epidemiology study of the early waves of SARS-CoV-2 infections in this country based on Bayesian phylogeographic approaches. Whereas the first wave in mid-2020 was characterized by a significant diversification of lineages and predominance of B.1.416, the second wave in late 2020 was composed primarily of B.1.1.420. Our results indicate that B.1.416 originated in Senegal and was exported mainly to Europe. In contrast, B.1.1.420 was introduced from Italy, gained fitness in Senegal, and then spread worldwide. Since both B.1.416 and B.1.1.420 lineages carry several positive selected mutations in the spike and nucleocapsid genes, each of which may explain their local dominance, their mutation profiles should be carefully monitored. As the pandemic continues to evolve, molecular surveillance in all regions of Africa will play a key role in stemming its spread.

6.
Sci Rep ; 11(1): 23644, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880295

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages that carry mutations in the spike gene are of concern for potential impact to treatment and prevention efforts. To monitor for new SARS-CoV-2 mutations, a panel of specimens were sequenced from both wave one (N = 96), and wave two (N = 117) of the pandemic in Senegal by whole genome next generation sequencing. Amongst these genomes, new combinations of SARS-CoV-2 spike mutations were identified, with E484K + N501T, L452R + N501Y, and L452M + S477N exclusively found in second wave specimens. These sequences are evidence of local diversification over the course of the pandemic and parallel evolution of escape mutations in different lineages.


Asunto(s)
COVID-19/patología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/virología , Humanos , Mutación , Unión Proteica , Dominios Proteicos/genética , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Senegal , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
7.
Malar J ; 19(1): 320, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883282

RESUMEN

BACKGROUND: Despite several control interventions resulting in a considerable decrease in malaria prevalence in the Union of the Comoros, the disease remains a public health problem with high transmission in Grande Comore compared to neighbouring islands. In this country, only a few studies investigating the genetic diversity of Plasmodium falciparum have been performed so far. For this reason, this study aims to examine the genetic diversity of P. falciparum by studying samples collected in Grande Comore in 2012 and 2013, using merozoite surface protein 1 (msp1), merozoite surface protein 2 (msp2) and single nucleotide polymorphism (SNP) genetic markers. METHODS: A total of 162 positive rapid diagnostic test (RDT) samples from Grande Comore were used to extract parasite DNA. Allelic families K1, Mad20 and RO33 of the msp1 gene as well as allelic families IC3D7 and FC37 of the msp2 gene were determined by using nested PCR. Additionally, 50 out of 151 samples were genotyped to study 24 SNPs by using high resolution melting (HRM). RESULTS: Two allelic families were predominant, the K1 family of msp1 gene (55%) and the FC27 family of msp2 gene (47.4%). Among 50 samples genotyped for 24 SNPs, 42 (84%) yielded interpretable results. Out of these isolates, 36 (85%) were genetically unique and 6 (15%) grouped into two clusters. The genetic diversity of P. falciparum calculated from msp1 and msp2 genes and SNPs was 0.82 and 0.61, respectively. CONCLUSION: In summary, a large genetic diversity of P. falciparum was observed in Grande Comore. This may favour persistence of malaria and might be one of the reasons for the high malaria transmission compared to neighbouring islands. Further surveillance of P. falciparum isolates, mainly through environmental management and vector control, is warranted until complete elimination is attained.


Asunto(s)
Antígenos de Protozoos/genética , Variación Genética , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple , Proteínas Protozoarias/genética , Comoras , Reacción en Cadena de la Polimerasa
8.
PLoS Comput Biol ; 16(4): e1007702, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32315315

RESUMEN

The growth of the malaria parasite Plasmodium falciparum in human blood causes all the symptoms of malaria. To proliferate, non-motile parasites must have access to susceptible red blood cells, which they invade using pairs of parasite ligands and host receptors that define invasion pathways. Parasites can switch invasion pathways, and while this flexibility is thought to facilitate immune evasion, it may also reflect the heterogeneity of red blood cell surfaces within and between hosts. Host genetic background affects red blood cell structure, for example, and red blood cells also undergo dramatic changes in morphology and receptor density as they age. The in vivo consequences of both the accessibility of susceptible cells, and their heterogeneous susceptibility, remain unclear. Here, we measured invasion of laboratory strains of P. falciparum relying on distinct invasion pathways into red blood cells of different ages. We estimated invasion efficiency while accounting for red blood cell accessibility to parasites. This approach revealed different tradeoffs made by parasite strains between the fraction of cells they can invade and their invasion rate into them, and we distinguish "specialist" strains from "generalist" strains in this context. We developed a mathematical model to show that generalist strains would lead to higher peak parasitemias in vivo compared to specialist strains with similar overall proliferation rates. Thus, the ecology of red blood cells may play a key role in determining the rate of P. falciparum parasite proliferation and malaria virulence.


Asunto(s)
Eritrocitos/fisiología , Eritrocitos/parasitología , Malaria Falciparum/parasitología , Animales , Recuento de Eritrocitos , Humanos , Evasión Inmune/genética , Evasión Inmune/inmunología , Malaria/parasitología , Modelos Teóricos , Parásitos , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad
9.
Malar J ; 18(1): 239, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31311552

RESUMEN

BACKGROUND: The Plasmodium falciparum reticulocyte binding protein homolog 2b (PfRh2b) is an important P. falciparum merozoite ligand that mediates invasion of erythrocytes by interacting with a chymotrypsin-sensitive "receptor Z". A large deletion polymorphism is found in the c-terminal ectodomain of this protein in many countries around the world, resulting in a truncated, but expressed protein. The varying frequencies by region suggest that there could be region specific immune selection at this locus. Therefore, this study was designed to determine temporal changes in the PfRh2b deletion polymorphism in infected individuals from Thiès (Senegal) and Western Gambia (The Gambia). It was also sought to determine the selective pressures acting at this locus and whether prevalence of the deletion in isolates genotyped by a 24-SNP molecular barcode is linked to background genotype or whether there might be independent selection acting at this locus. METHODS: Infected blood samples were sourced from archives of previous studies conducted between 2007 and 2013 at SLAP clinic in Thiès and from 1984 to 2013 in Western Gambia by MRC Unit at LSHTM, The Gambia. A total of 1380 samples were screened for the dimorphic alleles of the PfRh2b using semi-nested Polymerase Chain Reaction PCR. Samples from Thiès were previously barcoded. RESULTS: In Thiès, a consistent trend of decreasing prevalence of the PfRh2b deletion over time was observed: from 66.54% in 2007 and to 38.1% in 2013. In contrast, in Western Gambia, the frequency of the deletion fluctuated over time; it increased between 1984 and 2005 from (58.04%) to (69.33%) and decreased to 47.47% in 2007. Between 2007 and 2012, the prevalence of this deletion increased significantly from 47.47 to 83.02% and finally declined significantly to 57.94% in 2013. Association between the presence of this deletion and age was found in Thiès, however, not in Western Gambia. For the majority of isolates, the PfRh2b alleles could be tracked with specific 24-SNP barcoded genotype, indicating a lack of independent selection at this locus. CONCLUSION: PfRh2b deletion was found in the two countries with varying prevalence during the study period. However, these temporal and spatial variations could be an obstacle to the implementation of this protein as a potential vaccine candidate.


Asunto(s)
Secuencia de Bases , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple , Proteínas Protozoarias/genética , Selección Genética , Eliminación de Secuencia , Gambia , Humanos , Estaciones del Año , Senegal
10.
Sci Rep ; 8(1): 15763, 2018 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-30361631

RESUMEN

Parasites infect hosts in widely varying environments, encountering diverse challenges for adaptation. To identify malaria parasite genes under locally divergent selection across a large endemic region with a wide spectrum of transmission intensity, genome sequences were obtained from 284 clinical Plasmodium falciparum infections from four newly sampled locations in Senegal, The Gambia, Mali and Guinea. Combining these with previous data from seven other sites in West Africa enabled a multi-population analysis to identify discrete loci under varying local selection. A genome-wide scan showed the most exceptional geographical divergence to be at the early gametocyte gene locus gdv1 which is essential for parasite sexual development and transmission. We identified a major structural dimorphism with alternative 1.5 kb and 1.0 kb sequence deletions at different positions of the 3'-intergenic region, in tight linkage disequilibrium with the most highly differentiated single nucleotide polymorphism, one of the alleles being very frequent in Senegal and The Gambia but rare in the other locations. Long non-coding RNA transcripts were previously shown to include the entire antisense of the gdv1 coding sequence and the portion of the intergenic region with allelic deletions, suggesting adaptive regulation of parasite sexual development and transmission in response to local conditions.


Asunto(s)
Sitios Genéticos , Malaria Falciparum/parasitología , Metagenómica/métodos , Parásitos/genética , Selección Genética , Desarrollo Sexual/genética , África Occidental , Alelos , Animales , Secuencia de Bases , Frecuencia de los Genes/genética , Variación Genética , Genoma , Geografía , Haplotipos/genética , Homocigoto , Humanos , Malaria Falciparum/genética , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
Infect Immun ; 85(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28760933

RESUMEN

Plasmodium falciparum, the parasite that causes the deadliest form of malaria, has evolved multiple proteins known as invasion ligands that bind to specific erythrocyte receptors to facilitate invasion of human erythrocytes. The EBA-175/glycophorin A (GPA) and Rh5/basigin ligand-receptor interactions, referred to as invasion pathways, have been the subject of intense study. In this study, we focused on the less-characterized sialic acid-containing receptors glycophorin B (GPB) and glycophorin C (GPC). Through bioinformatic analysis, we identified extensive variation in glycophorin B (GYPB) transcript levels in individuals from Benin, suggesting selection from malaria pressure. To elucidate the importance of the GPB and GPC receptors relative to the well-described EBA-175/GPA invasion pathway, we used an ex vivo erythrocyte culture system to decrease expression of GPA, GPB, or GPC via lentiviral short hairpin RNA transduction of erythroid progenitor cells, with global surface proteomic profiling. We assessed the efficiency of parasite invasion into knockdown cells using a panel of wild-type P. falciparum laboratory strains and invasion ligand knockout lines, as well as P. falciparum Senegalese clinical isolates and a short-term-culture-adapted strain. For this, we optimized an invasion assay suitable for use with small numbers of erythrocytes. We found that all laboratory strains and the majority of field strains tested were dependent on GPB expression level for invasion. The collective data suggest that the GPA and GPB receptors are of greater importance than the GPC receptor, supporting a hierarchy of erythrocyte receptor usage in P. falciparum.


Asunto(s)
Eritrocitos/fisiología , Eritrocitos/parasitología , Glicoforinas/genética , Plasmodium falciparum/patogenicidad , Biología Computacional , Glicoforinas/metabolismo , Humanos , Ligandos , Plasmodium falciparum/inmunología , Plasmodium falciparum/fisiología , Unión Proteica , Proteómica , Receptores de Superficie Celular/metabolismo
12.
Sci Rep ; 7(1): 6436, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28743888

RESUMEN

It is important to understand intrinsic variation in asexual blood stage multiplication rates of the most virulent human malaria parasite, Plasmodium falciparum. Here, multiplication rates of long-term laboratory adapted parasite clones and new clinical isolates were measured, using a newly standardised assay of growth from low starting density in replicate parallel cultures with erythrocytes from multiple different donors, across multiple cycles. Multiplication rates of long-term established clones were between 7.6 and 10.5 fold per 48 hours, with clone Dd2 having a higher rate than others (clones 3D7, HB3 and D10). Parasite clone-specific growth was then analysed in co-culture assays with all possible heterologous pairwise combinations. This showed that co-culture of different parasites did not affect their replication rates, indicating that there were no suppressive interactions operating between parasites. Multiplication rates of eleven new clinical isolates were measured after a few weeks of culture, and showed a spectrum of replication rates between 2.3 and 6.0 fold per 48 hours, the entire range being lower than for the long-term laboratory adapted clones. Multiplication rate estimates remained stable over time for several isolates tested repeatedly up to three months after culture initiation, indicating considerable persistence of this important trait variation.


Asunto(s)
Malaria Falciparum/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/genética , Técnicas de Cocultivo , Eritrocitos/parasitología , Humanos , Repeticiones de Microsatélite , Plasmodium falciparum/aislamiento & purificación
13.
J Infect Dis ; 216(2): 267-275, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28605544

RESUMEN

Background: Plasmodium falciparum reticulocyte-binding protein homologue 2b (PfRh2b) is an invasion ligand that is a potential blood-stage vaccine candidate antigen; however, a naturally occurring deletion within an immunogenic domain is present at high frequencies in Africa and has been associated with alternative invasion pathway usage. Standardized tools that provide antigenic specificity in in vitro assays are needed to functionally assess the neutralizing potential of humoral responses against malaria vaccine candidate antigens. Methods: Transgenic parasite lines were generated to express the PfRh2b deletion. Total immunoglobulin G (IgG) from individuals residing in malaria-endemic regions in Tanzania, Senegal, and Mali were used in growth inhibition assays with transgenic parasite lines. Results: While the PfRh2b deletion transgenic line showed no change in invasion pathway utilization compared to the wild-type in the absence of specific antibodies, it outgrew wild-type controls in competitive growth experiments. Inhibition differences with total IgG were observed in the different endemic sites, ranging from allele-specific inhibition to allele-independent inhibitory immune responses. Conclusions: The PfRh2b deletion may allow the parasite to escape neutralizing antibody responses in some regions. This difference in geographical inhibition was revealed using transgenic methodologies, which provide valuable tools for functionally assessing neutralizing antibodies against vaccine-candidate antigens in regions with varying malaria endemicity.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Malaria/parasitología , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Alelos , Animales , Animales Modificados Genéticamente , Anticuerpos Neutralizantes/sangre , Eritrocitos/parasitología , Eliminación de Gen , Geografía , Humanos , Inmunoglobulina G/sangre , Malaria/inmunología , Malí , Plasmodium falciparum , Senegal , Tanzanía
14.
Malar J ; 16(1): 153, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28420422

RESUMEN

BACKGROUND: Emergence and spread of drug resistance to every anti-malarial used to date, creates an urgent need for development of sensitive, specific and field-deployable molecular tools for detection and surveillance of validated drug resistance markers. Such tools would allow early detection of mutations in resistance loci. The aim of this study was to compare common population signatures and drug resistance marker frequencies between two populations with different levels of malaria endemicity and history of anti-malarial drug use: Tanzania and Sénégal. This was accomplished by implementing a high resolution melting assay to study molecular markers of drug resistance as compared to polymerase chain reaction-restriction fragment length polymorphism (PCR/RFLP) methodology. METHODS: Fifty blood samples were collected each from a lowly malaria endemic site (Sénégal), and a highly malaria endemic site (Tanzania) from patients presenting with uncomplicated Plasmodium falciparum malaria at clinic. Data representing the DHFR were derived using both PCR-RFLP and HRM assay; while genotyping data representing the DHPS were evaluated in Senegal and Tanzania using HRM. Msp genotyping analysis was used to characterize the multiplicity of infection in both countries. RESULTS: A high prevalence of samples harbouring mutant DHFR alleles was observed in both population using both genotyping techniques. HRM was better able to detect mixed alleles compared to PCR/RFLP for DHFR codon 51 in Tanzania; and only HRM was able to detect mixed infections from Senegal. A high prevalence of mutant alleles in DHFR (codons 51, 59, 108) and DHPS (codon 437) were found among samples from Sénégal while no mutations were observed at DHPS codons 540 and 581, from both countries. Overall, the frequency of samples harbouring either a single DHFR mutation (S108N) or double mutation in DHFR (C59R/S108N) was greater in Sénégal compared to Tanzania. CONCLUSION: Here the results demonstrate that HRM is a rapid, sensitive, and field-deployable alternative technique to PCR-RFLP genotyping that is useful in populations harbouring more than one parasite genome (polygenomic infections). In this study, a high levels of resistance polymorphisms was observed in both dhfr and dhps, among samples from Tanzania and Sénégal. A routine monitoring by molecular markers can be a way to detect emergence of resistance involving a change in the treatment policy.


Asunto(s)
Dihidropteroato Sintasa/genética , Resistencia a Medicamentos , Técnicas de Diagnóstico Molecular/métodos , Plasmodium/enzimología , Sistemas de Atención de Punto , Tetrahidrofolato Deshidrogenasa/genética , Temperatura de Transición , Adolescente , Niño , Preescolar , Genotipo , Técnicas de Genotipaje/métodos , Humanos , Malaria Falciparum/parasitología , Plasmodium/efectos de los fármacos , Plasmodium/genética , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Senegal , Tanzanía , Adulto Joven
15.
Mol Ecol ; 26(11): 2880-2894, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28214367

RESUMEN

To determine whether the major human malaria parasite Plasmodium falciparum exhibits fragmented population structure or local adaptation at the northern limit of its African distribution where the dry Sahel zone meets the Sahara, samples were collected from diverse locations within Mauritania over a range of ~1000 km. Microsatellite genotypes were obtained for 203 clinical infection samples from eight locations, and Illumina paired-end sequences were obtained to yield high coverage genomewide single nucleotide polymorphism (SNP) data for 65 clinical infection samples from four locations. Most infections contained single parasite genotypes, reflecting low rates of transmission and superinfection locally, in contrast to the situation seen in population samples from countries further south. A minority of infections shared related or identical genotypes locally, indicating some repeated transmission of parasite clones without recombination. This caused some multilocus linkage disequilibrium and local divergence, but aside from the effect of repeated genotypes there was minimal differentiation between locations. Several chromosomal regions had elevated integrated haplotype scores (|iHS|) indicating recent selection, including those containing drug resistance genes. A genomewide FST scan comparison with previous sequence data from an area in West Africa with higher infection endemicity indicates that regional gene flow prevents genetic isolation, but revealed allele frequency differentiation at three drug resistance loci and an erythrocyte invasion ligand gene. Contrast of extended haplotype signatures revealed none to be unique to Mauritania. Discrete foci of infection on the edge of the Sahara are genetically highly connected to the wider continental parasite population, and local elimination would be difficult to achieve without very substantial reduction in malaria throughout the region.


Asunto(s)
Genética de Población , Plasmodium falciparum/genética , África del Norte , África Occidental , Animales , Flujo Génico , Frecuencia de los Genes , Genotipo , Haplotipos , Humanos , Malaria Falciparum/parasitología , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Selección Genética
16.
Parasite ; 23: 34, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27561250

RESUMEN

In the Union of Comoros, interventions for combating malaria have contributed to a spectacular decrease in the prevalence of the disease. We studied the current distribution of Plasmodium species on the island of Grande Comore using nested PCR. The rapid diagnostic tests (RDTs) currently used in the Comoros are able to identify Plasmodium falciparum but no other Plasmodium species. In this study, we tested 211 RDTs (158 positive and 53 negative). Among the 158 positive RDTs, 22 were positive for HRP2, 3 were positive only for pLDH, and 133 were positive for HRP2 and pLDH. DNA was extracted from a proximal part of the nitrocellulose membrane of RDTs. A total of 159 samples were positive by nested PCR. Of those, 156 (98.11%) were positive for P. falciparum, 2 (1.25%) were positive for P. vivaxI, and 1 (0.62%) was positive for P. malariae. None of the samples were positive for P. ovale. Our results show that P. falciparum is still the most dominant species on the island of Grande Comore, but P. vivax and P. malariae are present at a low prevalence.


Asunto(s)
Malaria/epidemiología , Plasmodium falciparum/aislamiento & purificación , Plasmodium malariae/aislamiento & purificación , Plasmodium vivax/aislamiento & purificación , Adulto , Preescolar , Comoras/epidemiología , Cartilla de ADN/química , ADN Protozoario/química , ADN Protozoario/aislamiento & purificación , Femenino , Humanos , Lactante , Malaria/parasitología , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Plasmodium falciparum/genética , Plasmodium malariae/genética , Plasmodium ovale/genética , Plasmodium ovale/aislamiento & purificación , Plasmodium vivax/genética , Reacción en Cadena de la Polimerasa , Embarazo , Prevalencia , Proteínas Protozoarias/genética , Proteínas Protozoarias/aislamiento & purificación , Especificidad de la Especie
17.
Am J Trop Med Hyg ; 95(5): 1054-1060, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27549635

RESUMEN

In 2006, artemether-lumefantrine (AL) became the first-line treatment of uncomplicated malaria in Senegal, Mali, and the Gambia. To monitor its efficacy, between August 2011 and November 2014, children with uncomplicated Plasmodium falciparum malaria were treated with AL and followed up for 42 days. A total of 463 subjects were enrolled in three sites (246 in Senegal, 97 in Mali, and 120 in Gambia). No early treatment failure was observed and malaria infection cleared in all patients by day 3. Polymerase chain reaction (PCR)-adjusted adequate clinical and parasitological response (ACPR) was 100% in Mali, and the Gambia, and 98.8% in Senegal. However, without PCR adjustment, ACPR was 89.4% overall; 91.5% in Mali, 98.8% in Senegal, and 64.3% in the Gambia (the lower value in the Gambia attributed to poor compliance of the full antimalarial course). However, pfmdr1 mutations were prevalent in Senegal and a decrease in parasite sensitivity to artesunate and lumefantrine (as measured by ex vivo drug assay) was observed at all sites. Recrudescent parasites did not show Kelch 13 (K13) mutations and AL remains highly efficacious in these west African sites.


Asunto(s)
Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Resistencia a Medicamentos/genética , Etanolaminas/uso terapéutico , Fluorenos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Adolescente , Secuencia de Aminoácidos , Arteméter , Niño , Preescolar , Estudios de Seguimiento , Gambia , Sitios Genéticos , Humanos , Lumefantrina , Malí , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Mutación , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Senegal , Adulto Joven
18.
Malar J ; 15: 80, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26861780

RESUMEN

BACKGROUND: Plasmodium vivax is very rarely seen in West Africa, although specific detection methods are not widely applied in the region, and it is now considered to be absent from North Africa. However, this parasite species has recently been reported to account for most malaria cases in Nouakchott, the capital of Mauritania, which is a large country at the interface of sub-Saharan West Africa and the Maghreb region in northwest Africa. METHODS: To determine the distribution of malaria parasite species throughout Mauritania, malaria cases were sampled in 2012 and 2013 from health facilities in 12 different areas. These sampling sites were located in eight major administrative regions of the country, within different parts of the Sahara and Sahel zones. Blood spots from finger-prick samples of malaria cases were processed to identify parasite DNA by species-specific PCR. RESULTS: Out of 472 malaria cases examined, 163 (34.5 %) had P. vivax alone, 296 (62.7 %) Plasmodium falciparum alone, and 13 (2.8 %) had mixed P. falciparum and P. vivax infection. All cases were negative for Plasmodium malariae and Plasmodium ovale. The parasite species distribution showed a broad spectrum, P. vivax being detected at six of the different sites, in five of the country's major administrative regions (Tiris Zemmour, Tagant, Brakna, Assaba, and the capital Nouakchott). Most cases in Nouakchott were due to P. vivax, although proportions vary significantly among different health facilities in the city. In the northern town of Zouérat, all cases were due to P. vivax, whereas almost all cases in the south of the country were due to P. falciparum. All P. vivax cases tested were Duffy blood group positive. CONCLUSIONS: It is important that P. vivax is recognized to be a widespread cause of malaria in Mauritania, occurring in diverse regions. This should be noted by the World Health Organization, as it has significant implications for diagnosis, treatment and control of malaria in the northwestern part of Africa.


Asunto(s)
Malaria Vivax/epidemiología , África Occidental/epidemiología , Geografía , Humanos , Mauritania/epidemiología , Plasmodium falciparum/fisiología , Plasmodium malariae/fisiología , Plasmodium ovale/fisiología , Plasmodium vivax/fisiología
19.
Trends Parasitol ; 32(4): 274-283, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26725306

RESUMEN

Erythrocyte invasion by Plasmodium falciparum merozoites is an essential step for parasite survival and proliferation. Invasion is mediated by multiple ligands, which could be promising vaccine targets. The usage and sequence of these ligands differs between parasites, yet most studies of them have been carried out in only a few laboratory-adapted lines. To understand the true extent of natural variation in invasion phenotypes and prioritize vaccine candidates on a relevant evidence base, we need to develop and apply standardized assays to large numbers of field isolates. The West African Merozoite Invasion Network (WAMIN) has been formed to meet these goals, expand training in Plasmodium phenotyping, and perform large-scale field phenotyping studies in order to prioritize blood stage vaccine candidates.


Asunto(s)
Eritrocitos/parasitología , Vacunas contra la Malaria , Malaria Falciparum/prevención & control , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , África Occidental , Animales , Conducta Cooperativa , Variación Genética , Humanos , Fenotipo , Plasmodium falciparum/clasificación , Plasmodium falciparum/inmunología , Investigación/normas
20.
Malar J ; 14: 373, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26415927

RESUMEN

BACKGROUND: The World Health Organization has recommended rapid diagnostic tests (RDTs) for use in the diagnosis of suspected malaria cases. In addition to providing quick and accurate detection of Plasmodium parasite proteins in the blood, these tests can be used as sources of DNA for further genetic studies. As sulfadoxine-pyrimethamine is used currently for intermittent presumptive treatment of pregnant women in both Senegal and in the Comoros Islands, resistance mutations in the dhfr and dhps genes were investigated using DNA extracted from RDTs. METHODS: The proximal portion of the nitrocellulose membrane of discarded RDTs was used for DNA extraction. This genomic DNA was amplified using HRM to genotype the molecular markers involved in resistance to sulfadoxine-pyrimethamine: dhfr (51, 59, 108, and 164) and dhps (436, 437, 540, 581, and 613). Additionally, the msp1 and msp2 genes were amplified to determine the average clonality between Grande-Comore (Comoros) and Thiès (Senegal). RESULTS: A total of 201 samples were successfully genotyped at all codons by HRM; whereas, in 200 msp1 and msp2 genes were successfully amplified and genotyped by nested PCR. A high prevalence of resistance mutations were observed in the dhfr gene at codons 51, 59, and 108 as well as in the dhps gene at codons 437 and 436. A novel mutant in dhps at codon positions 436Y/437A was observed. The dhfr I164L codon and dhps K540 and dhps A581G codons had 100 % wild type alleles in all samples. CONCLUSION: The utility of field-collected RDTs was validated as a source of DNA for genetic studies interrogating frequencies of drug resistance mutations, using two different molecular methods (PCR and High Resolution Melting). RDTs should not be discarded after use as they can be a valuable source of DNA for genetic and epidemiological studies in sites where filter paper or venous blood collected samples are nonexistent.


Asunto(s)
ADN Protozoario/genética , Resistencia a Medicamentos/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Juego de Reactivos para Diagnóstico/parasitología , Antimaláricos/farmacología , Secuencia de Bases , Comoras/epidemiología , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Datos de Secuencia Molecular , Mutación/genética , Parasitología , Prevalencia , Proteínas Protozoarias/genética , Senegal/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...